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a b s t r a c t 

The relative effects of initial condition and model uncertainties on local predictability are important is- 

sues in the atmospheric sciences. This study quantitatively compared the relative effects of these two 

types of uncertainty on local predictability using the Lorenz model. Local predictability limits were quan- 

titatively estimated using the nonlinear local Lyapunov exponent (NLLE) method. Results show that the 

relative effects of initial conditions and model uncertainties on local predictability vary with the state. In 

addition, inverse spatial distributions of local predictability limits are induced by the two types of uncer- 

tainty. In the regime transition region, the local predictability limits of modeled states are more sensitive 

to initial condition uncertainty than to model uncertainty, resulting in lower local predictability limits 

being induced by initial condition uncertainties. Local predictability limits induced by initial condition 

uncertainties are 4 time units shorter than those induced by model uncertainties. In the “butterfly wing”

regions, the local predictability limits of modeled states are more sensitive to model uncertainty than to 

initial condition uncertainty, resulting in lower local predictability limits due to model uncertainty. Lo- 

cal predictability limits induced by initial condition uncertainty are larger (0 to 4 time units) than those 

induced by model uncertainty. These differences in the regions that are sensitive to the two types of un- 

certainty mean that strategic reductions of uncertainty in sensitive areas may effectively im prove forecast 

skill. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Models of the atmosphere, a hyper-chaotic system, are ex-

remely sensitive to initial conditions. Small errors between

nitially adjacent trajectories grow rapidly and quickly affect

he whole attractor. Consequently, forecasting accuracy decreases

apidly to the point of being meaningless. Thus, accurate fore-

asts of the atmosphere are always challenging. Two main con-

ributors to this loss of predictability are uncertainties in the ini-

ial conditions and in the model [5 , 7 , 39 , 76 , 77 , 79] . In the atmo-

pheric system, slight differences between observed and true state

alues are inevitable, even with the application of advanced ob-

ervation techniques and data assimilation methods. Initial condi-

ion uncertainty is therefore unavoidable. In addition, incomplete

nderstanding of atmospheric dynamics, parameterizations of sub-

rid scale microphysical processes and low model resolution result
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n model uncertainty. These two types of uncertainty influence the

redictability of the atmosphere. Lorenz [39] used them to clas-

ify predictability as related mainly to either to initial condition

ncertainty or to model uncertainty. Many works have studied the

ffects of the two types of uncertainty on the two types of pre-

ictability [17 , 19 , 23 , 31 , 33 , 47 , 48 , 65 , 75] . 

Since the pioneering work of Thompson [66] and Lorenz [35] ,

uch research on the influence of initial errors on predictability

as been performed. Predictability is closely related to the growth

ate of the initial error. When the initial errors evolve to exceed a

ertain threshold value, predictability can be considered to be lost

8 , 42 , 49 , 62 , 70] . Lorenz [36] first investigated the growth of error

ystematically in a “low-order” model with 28 variables. This study

emonstrated that the error growth was highly dependent on syn-

ptic conditions, and atmospheric predictability reached approxi-

ately four days, during which time small errors doubled in mag-

itude. Later, Lorenz [37] investigated error growth by searching

or analogues in observational data. Lorenz pointed out that small

nitial errors among analogues would grow at a quasi-exponential

https://doi.org/10.1016/j.chaos.2020.110094
http://www.ScienceDirect.com
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rate at the early stage. After the early stage, the growth rate would

decrease to zero and the error growth would effectively stop be-

cause of nonlinear terms in the dynamical equations. Lorenz as-

sumed the nonlinear terms to be quadratic, although this was not

readily proved. According to this quadratic hypothesis, small errors

would double in ~2.5 days. Trevisan [67] studied the rate of error

growth at the transient stage, and pointed out that the growth rate

during the transient period could great affect predictability with

initial errors of a given finite size. Based on previous studies of var-

ious error growth rates at different stages [21 , 29] , Lorenz [43] pro-

posed three possible stages for the error growth rate: an early

stage with rapid growth, a mature stage with quasi-exponential

growth and a saturation stage with zero growth. In addition to

the error growth rate, the initial error size also affects the pre-

dictability. Lorenz [38] pointed out that the predictability limit can

be increased by reducing the initial error size in chaotic systems.

Ding and Li [9] applied the nonlinear finite-time Lyapunov expo-

nent (FTLE) for chaotic systems to study the impact of initial er-

ror size on predictability. According to this study, the predictabil-

ity limit decreased as the infinitesimally small error size in chaotic

systems increased. Therefore, reducing initial errors by increas-

ing the observations in sensitive areas and applying data assimi-

lation techniques are effective methods for improving forecasting

[1 , 18 , 51 , 71 , 78] . 

In addition to initial condition uncertainty, model uncertainty

also affects the predictability of the atmosphere. The impacts of

model uncertainty on predictability receive less attention than do

those of initial condition uncertainty. However, previous studies

have pointed out that model errors have a great influence on pre-

dictability, and should not be ignored (e.g., [7 , 26 , 58] ). Although

model uncertainty contributes to the loss of predictability, its dy-

namics are still unclear. Leith [30] proposed an empirical equa-

tion describing the growth of uncertainties combining both uncer-

tainty types. It implied that the model error growth is linear for a

short time when no initial errors are present in the system. How-

ever, Vannitsem and Toth [69] studied the short-term dynamics

of model errors in a low-order atmospheric system [40] and sug-

gested that the quadratic evolution of model error growth is com-

mon. Zhu and Thorpe [79] investigated the influence of model un-

certainty on the predictability of extratropical cyclones. Their study

found that the model uncertainty growth increased as time to the

power μ ranged from 0.5 to 3 during the early period, when no

initial errors were present. After a certain time, the model uncer-

tainty growth reached a saturation value. The time for model un-

certainty to enter the saturation stage is associated with the inten-

sity of the cyclone. The greater the intensity, the less time it takes

to reach saturation. Therefore, reducing model uncertainty can

improve forecasting. Multi-model ensemble forecasting is a com-

monly used method to reduce model uncertainty [3 , 24 , 28 , 60 , 64] . 

Both types of uncertainty influence predictability, but which has

the larger impact? It is widely recognized that initial condition

uncertainty plays a more important role in short-range forecasts,

whereas in extended-range forecasts model uncertainty dominates

[41] . Researchers have compared the relative roles of initial condi-

tion and boundary uncertainties in predictability using operational

analysis (e.g., [16 , 61] ), finding a greater contribution to forecast er-

rors by initial condition uncertainty. However, other studies have

found that initial condition and boundary condition uncertainties

are comparably important, and should both be taken into account

(e.g., [7 , 26] ). Chu [6] adopted the Lorenz model to investigate the

sensitivity of predictability to initial condition and model uncer-

tainties. This study found that model uncertainty had an effect on

atmospheric predictability comparable to that of initial condition

uncertainty, and thus model uncertainty should not be ignored. In

addition, Orrell et al. [56] applied the local model drift approach

to quantify state-dependent model error, and found that model
ncertainty dominated the growth of forecast errors for up to

 days. 

It is of great significance to study the relative effects of initial

ondition and model uncertainties. These efforts can contribute to

he improvement of forecast skill for weather and climate events

ccurring in some local regions by reducing the corresponding un-

ertainties to which such events are sensitive [2 , 4 , 44 , 50 , 51] . Al-

hough much research has studied the relative effects of the two

ypes of uncertainty on local predictability, a consensus has not yet

een reached. Moreover, previous studies have focused on qualita-

ive comparisons of the impacts of the two types of uncertainty on

ocal predictability. Quantitative comparisons have not yet been re-

orted. Chu [6] investigated only one set of initial conditions, and

id not provide a quantitative comparison of the relative effects of

he two types of uncertainty on local predictability. 

The purpose of this work is to study and quantitatively com-

are the relative effects of the two types of uncertainty on local

redictability. We followed the approach of Chu [6] , but consid-

red more initial states for the attractor. Previous studies used the

ocal Lyapunov exponent (LLE) method to analyze the local pre-

ictability of chaotic systems [53 , 74] . The LLEs characterize aver-

ge growth rates of infinitesimally small errors in the linear phase.

owever, when the errors grow to a certain size, the LLE method

s not applicable. The nonlinear local Lyapunov exponent (NLLE,

9 , 12 , 34] ) measures the average growth rates of errors in dynam-

cal systems without linearizing the governing equations. Conse-

uently, the NLLE method remains practicable even when the er-

ors grow to a certain size, which is an advantage over the LLE

ethod. Therefore, we used the NLLE method to estimate the local

redictability limits induced by initial condition and model uncer-

ainties. The relative effects of the two types of uncertainty were

uantitatively compared by calculating differences in the local pre-

ictability limits. The remainder of this paper is arranged as fol-

ows. Section 2 introduces the model, the NLLE method, and the

xperimental design. The results of a quantitative comparison of

he relative effects of the two types of uncertainty on local pre-

ictability limits are described in Section 3 . Finally, a discussion

nd conclusions are presented in Section 4 . 

. Model and method 

.1. Model description 

Lorenz [35] designed a simplified mathematical model to study

tmospheric convection. It contains three nonlinear ordinary dif-

erential equations: 
 

˙ x = −σ ( x − y ) 
˙ y = −xz + rx − y 
˙ z = xy − bz 

, (1)

here σ , r , and b are three parameters set to 10, 28, and 8/3, re-

pectively, in the Lorenz model, which exhibits chaotic behavior.

he Lorenz model has been widely used in meteorological science

tudies as it can reveal some features of the real atmosphere, such

s the sensitivity to initial conditions and various properties of

uasi-stationary regimes [20 , 45 , 57 , 59 , 72] . Projections of the Lorenz

ttractor on two-dimensional planes are shown in Fig. 1 . As shown

n Fig. 1 b, the attractor has a shape similar to that of a butterfly,

o the Lorenz attractor is also referred to as the butterfly attractor.

.2. NLLE method 

A large number of studies [21 , 27 , 36 , 46 , 52 , 53 , 68 , 73 , 74 , 80] have

nvestigated atmospheric predictability by measuring error growth

n the context of linear error dynamics. It is assumed that the ini-

ial error size is infinitesimal and the integration time is short.
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Fig. 1. Projections of the Lorenz attractor on three two-dimensional planes: the (a) X–Y, (b) X–Z, and (c) Y–Z planes. 
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Fig. 2. Example of 25 error vectors superimposed on state x ( t 0 ). The red dot repre- 

sents the state x ( t 0 ), and the lines connecting the red and black dots represent the 

error size. The magnitude of the error vectors is 10 −5 . 

Fig. 3. Ensemble mean of the logarithmic error growth as a function of iteration 

step. 
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owever, the magnitude of the initial error generally has a finite

ize in models of the real atmosphere, and the initial error growth

s affected by nonlinear effects over time. Therefore, investigations

f atmospheric predictability using linear error dynamics theory

re of limited value. Ding and Li [9] and Ding et al. [12] proposed

he NLLE method to study atmospheric predictability by measur-

ng the nonlinear growth of initial errors of a finite size without

inearizing the equation. The NLLE method accounts for nonlin-

ar effects, and has been successfully applied in the field of atmo-

pheric and oceanic predictability [10 , 11 , 13 , 15 , 22] . A description of

he NLLE method follows. 

In an n -dimensional nonlinear system, the dynamics are gov-

rned by 

d 

dt 
x ( t ) = F [ x ( t ) ] , (2) 

here x (t) = ( x 1 (t ) , x 2 (t ) , . . . x n (t ) ) T is the state vector. The evolu-

ion of initial perturbations δ( t 0 ) can be described by 

( t 0 + τ ) = η
(
x ( t 0 ) , δ( t 0 ) , τ

)
δ( t 0 ) , (3) 

here δ(t) = ( δ1 (t ) , δ2 (t ) , . . . δn (t ) ) T represents perturbations at

ime t , and η( x ( t 0 ), δ( t 0 ), τ ) is the nonlinear error propagator that

ropagates the initial perturbation δ( t 0 ) forward to perturbation

( t ). The NLLE is defined as (
x ( t 0 ) , δ( t 0 ) , τ

)
= 

1 

τ
ln 

‖ 

δ( t 0 + τ ) ‖ 

‖ 

δ( t 0 ) ‖ 

, (4) 

here λ( x ( t 0 ), δ( t 0 ), τ ) depends on the initial state x ( t 0 ) in phase

pace, the initial perturbation δ( t 0 ), and the integration time τ . The

LLE represents the average nonlinear growth rate of initial errors

volving from t 0 to t 0 + τ . 

For a state x ( t 0 ) in phase space, if a group of error vectors of the

ame infinitesimal magnitude but different direction are centered

n this state (as shown in Fig. 2 ), the NLLE of each dimension can

e given by 

i 

(
x ( t 0 ) , δ( t 0 ) , τ

)
= 

1 

τ
ln 

‖ 

δi ( t 0 + τ ) ‖ 

‖ 

δi ( t 0 ) ‖ 

, (5) 

here δi ( t 0 + τ ) is the error of the i -th dimension at t 0 + τ , and

i ( x ( t 0 ), δ( t 0 ), τ ) is the NLLE of the i -th dimension. The ensemble

ean NLLE of an n -dimensional “error ball” can be expressed by 

¯ ( x ( t 0 ) , τ ) = 

〈
λi 

(
x ( t 0 ) , δ( t 0 ) , τ

)〉
n 
, (6) 

here 〈 〉 n indicates an ensemble average of a multi-dimensional

LLE whose size is n . Therefore, the mean local relative error

rowth superposed on x ( t 0 ) can be obtained by 

¯
 ( x ( t 0 ) , τ ) = exp 

(
λ̄( x ( t 0 ) , τ ) τ

)
. (7) 
The error growth Ē ( x ( t 0 ) , τ ) is a function of time. It will reach

 saturation level and cease to grow over time. The predictability

imit of a single state x ( t 0 ) in phase space can be measured by the

ime when the forecast error exceeds 95% of the saturation value

8 , 13 , 14 , 25 , 32 , 63] . 

Fig. 3 shows an example of the estimation of the predictability

imit of a single state in the Lorenz model using the NLLE method.

he single state is ( −0.61, 2.66, 27.9) and the magnitude of the ini-
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tial error is 10 −5 . As shown in Fig. 3 , the initial errors grow er-

ratically with time at first. After ~1800 iteration steps, nonlinearity

dominates the growth of errors and the errors cease to grow but

fluctuate around a saturation value at which point the initial infor-

mation and predictability of the state are lost. The predictability of

the state can be estimated quantitatively as 17 (1800 × 0.01 × 95%)

time units. The local predictability limit, 17 time units, represents

the longest prediction time from the initial state ( −0.61, 2.66, 27.9).

2.3. Experiment design 

The initial state is given as (1.0, −0.3, 1.2). We integrated the

Lorenz model for 105,0 0 0 time steps using a fourth-order Runge–

Kutta scheme with a time step, �t , of 0.01 time units. The first

50 0 0 time steps are discarded for spin-up with the remaining

10 0,0 0 0 states used to represent the “true” system. These states

are used to investigate the relative effects of initial condition and

model uncertainties on local predictability. We performed model

runs for two different scenarios. One model run has only initial er-

rors (i.e., no model error exists in the system). The other has only

model errors, with no initial errors. To ensure a fair comparison of

the relative effects of the two types of uncertainty on local pre-

dictability, the initial condition and model uncertainties superim-

posed on the same state are always of the same magnitude. 

2.3.1. Scenario one: only initial condition errors 

Consider ( x ( t 0 ), y ( t 0 ), z ( t 0 )) to be a true state in phase space. A

group of initial error vectors are superimposed on this state. The

directions of the initial error vectors are different but their magni-

tudes all equal δ. An imperfect state ( x ′ ( t 0 ), y ′ ( t 0 ), z ′ ( t 0 )) can then

be represented by 

x ′ ( t 0 ) = x ( t 0 ) + δ1 , (8)

y ′ ( t 0 ) = y ( t 0 ) + δ2 , (9)

z ′ ( t 0 ) = z ( t 0 ) + δ3 , (10)

δ2 = δ2 
1 + δ2 

2 + δ2 
3 , (11)

where δ1 , δ2 , and δ3 are the three components of the initial error

vectors δ superimposed in the x, y , and z directions, respectively.

The true state ( x ( t 0 ), y ( t 0 ), z ( t 0 )) and the imperfect states ( x ′ ( t 0 ),
y ′ ( t 0 ), z ′ ( t 0 )) are integrated for 50 0 0 time steps as a true run and

a forecast run, respectively. The forecast error can be obtained by

calculating the difference of the forecast run and true run. Using

the NLLE method, the predictability limit of state ( x ( t 0 ), y ( t 0 ), z ( t 0 ))

induced by initial condition uncertainty can be determined quan-

titatively. 

2.3.2. Scenario two: only model errors 

For the scenario with model errors but no initial condition er-

rors, the three parameters are regarded as state variables. Then, a

group of model error vectors are superimposed on the three pa-

rameters. The system can thus be represented by 

σ ′ = σ + ε 1 , (12)

b ′ = b + ε 2 , (13)

r ′ = r + ε 3 , (14)

ε 

2 = ε 

2 
1 + ε 

2 
2 + ε 

2 
3 , (15)
here ɛ 1 , ɛ 2 , and ɛ 3 are the three components of initial vectors

 superimposed on parameters σ , b , and r , respectively. To ex-

lore the effect of model uncertainty on the predictability of state

 x ( t 0 ), y ( t 0 ), z ( t 0 )), we integrate the perfect model and the im-

erfect model for 50 0 0 time steps from state ( x ( t 0 ), y ( t 0 ), z ( t 0 ))

s a true run and a forecast run, respectively. Using the NLLE

ethod, the predictability limit of state ( x ( t 0 ), y ( t 0 ), z ( t 0 )) induced

y model uncertainty can be determined quantitatively by study-

ng the growth of the model error. 

. Results 

The relative effects of initial condition and model uncertainties

n local predictability can be quantified by comparing the local

redictability limits of states induced by the two types of uncer-

ainty. The local predictability limits depend on the growth rates

nd sizes of the errors. Before comparing the relative effects of the

wo types of error, their growth rates are explored. We calculate

he error rate as 

= 

1 

t − t 0 
ln 

‖ �x ( t ) ‖ 

‖ �x ( t 0 ) ‖ 

, (16)

here t 0 and t denote the initial and evolution times, respectively,

nd �x ( t 0 ) and �x ( t ) represent the magnitude of uncertainty at

 0 and t , respectively. Two groups of 10,0 0 0 initial condition and

odel error vectors of the same magnitude but different direc-

ion were superimposed on the states under the two scenarios. At

ach iteration step, we averaged the growth of all error vectors

o obtain the average growth of errors with in the iteration steps.

 large number of cases of states was chosen in our work. Un-

er scenario one, the true state ( x ( t 0 ), y ( t 0 ), z ( t 0 )) and imperfect

tates ( x ′ ( t 0 ), y ′ ( t 0 ), z ′ ( t 0 )) are integrated for 50 0 0 time steps as a

rue run and a forecast run, respectively. Under scenario two, we

ntegrated the perfect and imperfect model for 50 0 0 time steps

rom the same state ( x ( t 0 ), y ( t 0 ), z ( t 0 )) as a true run and a fore-

ast run, respectively. The growth rates of the initial condition and

odel uncertainties with iteration steps can then be obtained us-

ng Eq. 16 . The relative growth rates of the initial condition and

odel errors are thus found to vary with phase and state. Fig. 4

hows the growth rates of the initial condition and model errors

or three cases. The three different states are (11.91, 9.96, 34.64),

3.89, 6.47, 14.66) and (1.53, 1.07, 22.25). The magnitudes of the

nitial condition and model uncertainties are both 10 −2 . As shown

n Fig. 4 , the growth rates of the two types of error rapidly reach a

aximum value (in ~100 iterations). Afterwards, the growth rates

oth decrease rapidly. The growth rates of the initial condition and

odel errors generally differ during the first 10 0 0 iteration steps.

fter which, the growth rates are the same. During the first 10 0 0

teration steps, the relative growth rates of the initial condition and

odel errors are still variable (e.g., Fig. 4 c). 

The corresponding error growth of the initial condition and

odel uncertainties superimposed on these three states are shown

n Fig. 5 , where it is evident that the error first increases in a

igzag pattern. After some time, the error ceases to grow and fluc-

uates with a relatively small amplitude. The phase when the error

eases to grow is the saturation period. We calculated the aver-

ge value of the magnitudes of the errors in the period of satura-

ion as the saturation level. For the first state (11.91, 9.96, 34.64),

he growth rate of the model error is always higher than that of

he initial error during the first 500 iteration steps ( Fig. 4 a). In

his phase, the growth rate of the model error is larger and hence

eaches saturation faster than does the initial error ( Fig. 5 a). For

he second state (3.89, 6.47, 14.66), the growth rate of the model

rror is initially less than that of the initial error. However, after

ome time, the growth rate of the initial error increases, and the

wo types of error eventually reach saturation at the same time
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Fig. 4. Comparison of growth rates for initial (red) and model (blue) errors by iteration step for three unique states: (a) (11.91, 9.96, 34.64), (b) (3.89, 6.47, 14.66), and (c) 

(1.53, 1.07, 22.25). The magnitudes of the initial condition and model uncertainties are both 10 −2 . (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

Fig. 5. As Fig. 4 , but for the growth of initial condition and model uncertainties. The red (blue) dashed line denotes the time when the initial (model) error reaches 

saturation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 6. Variation of predictability limits for initial condition and model uncertainties for unique states (a) ( −0.96, 2.68, 28.5) and (b) (8.39, 1.05, 36.20). The black (red) line 

denotes the initial condition (model) uncertainty. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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( Fig. 5 b). For the third state (1.53, 1.07, 22.25), to begin with, the

growth rate of the model error is slightly lower than that of the

initial error. After some time, the initial error grows more rapidly

than does the model error, and eventually saturates faster ( Fig. 5 c).

As the time to saturation for the initial condition and model er-

rors differ among the states, the relative effects of the two types

of uncertainty vary with state as well. 

To quantify the relative effects of initial condition and model

uncertainties on local predictability, we first estimated the local

predictability limits of the states induced by these two types of

uncertainty. Fig. 6 shows the variation of local predictability lim-

its of two different states with the magnitude of the initial con-

dition and model uncertainties. The two states are ( −0.96, 2.68,

28.5) and (8.39, 1.05, 36.20). The magnitudes of the initial condi-

tion and model uncertainties range from 10 −7 to 10 −1 . As shown

in Fig. 6 a and b, the local predictability limits of these two states

both decrease as the magnitude of uncertainty increases regardless

of which type of uncertainty is present. This indicates that both

initial condition and model uncertainties have negative effects on

local predictability. 

The Lorenz model has three parameters σ , r, and b, which im-

pact local predictability limits; we also considered the sensitivities

of local predictability limits to these parameters. In this scenario,

no initial condition error is present in the model and only the pa-

rameter uncertainties are present. To study the sensitivity of the

predictability of the Lorenz system to each parameter, the parame-

ter error was superimposed on one parameter, while the other two

parameters remained accurate and fixed. We selected 10,0 0 0 con-

secutive but different initial conditions to perform the experiment.
or each initial condition, we integrated the perfect and imper-

ect models for 50 0 0 time steps. Then we computed the ensemble

ean of the error growths for all 10,0 0 0 initial conditions at each

teration step. Based on the time that the average errors reach sat-

ration, we estimated the predictability limit induced by only one

ype of parameter uncertainty. Fig. 7 shows the variations of pre-

ictability limits for each parameter uncertainty at different mag-

itudes, indicating that predictability limits decrease as the magni-

udes of the parameter uncertainties increase. In addition, for the

ame magnitude of uncertainties of the three parameters, the pre-

ictability limits induced by parameter σ are always higher than

hose induced by the other two parameters. The predictability lim-

ts induced by parameter b are the lowest. These results indicate

hat the uncertainty of parameter b has the largest impact on the

redictability limits, and uncertainty of parameter σ the least im-

act. Therefore, the local predictabilities are most sensitive to pa-

ameter b, less sensitive to parameter r, and least sensitive to pa-

ameter σ . 

We next select a trajectory including 500 consecutive states

 Fig. 8 a) and calculate their local predictability limits induced by

nitial condition and model uncertainties. Fig. 8 b shows the local

redictability limits of the 500 consecutive states. The magnitudes

f the initial condition and model uncertainties are both 10 −2 . As

vident in Fig. 8 b, the local predictability limits vary with state re-

ardless of which type of uncertainty is imposed in the system. In

ome cases, the local predictability limits of states induced by ini-

ial condition and model uncertainties are the same. However, in

ost cases, the local predictability limits induced by the two types

f uncertainty are different. This variation of local predictability
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Fig. 7. Variation of predictability limits for uncertainties associated with the three 

parameters ( σ , r, and b) with different magnitudes. The blue, green, and red colors 

represent the uncertainties of σ , r, and b, respectively. The base of the logarithm 

function is 10. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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imits indicates that the relative contributions of initial condition

nd model uncertainties to loss of predictability depend on the

hosen states. 

To quantify the relative roles of initial condition and model un-

ertainties in local predictability limits of states on the attractor,

e calculate the differences between the local predictability limits

f the same states induced by the two types of uncertainty. When

he local predictability limit of a single state induced by initial con-

ition errors is higher than that induced by model errors, it means

hat model errors have a more negative effect on local predictabil-

ty than do initial condition errors, and vice versa. When the lo-

al predictability limits induced by initial condition and model er-

ors are equal, it means that the initial condition and model errors

ave the same effects on local predictability. Therefore, a quan-

itative comparison of the relative effects of initial condition and

odel errors on local predictability can be obtained by calculating

he difference between the predictability limits induced by initial

ondition and model errors. Fig. 9 shows the differences between

redictability limits induced by initial condition and model errors

ith magnitudes of 10 −2 and 10 −5 . As shown in Fig. 9 a and b, the

ifferences in the predictability limits of 500 consecutive states in-

uced by initial condition and model errors fluctuate around zero,

uggesting that the relative effects of initial condition and model

ncertainties vary with state. In addition, the differences appear to
ig. 8. (a) Trajectory (green line) for 500 consecutive states on the attractor, and (b) pred

rrors. (For interpretation of the references to color in this figure legend, the reader is ref
hange periodically with time. The difference increases with time

nd gradually reaches a peak value. After this peak, the difference

ecreases with time to a minimum value below zero. Subsequently,

his cycle of variations of the difference repeats. 

To determine the origin of this phenomenon, more consecu-

ive states are evaluated. Fig. 10 shows the spatial distributions

nd the differences of local predictability limits of 20 0 0 states in-

uced by initial condition and model errors with magnitudes of

0 −2 and 10 −5 . As shown in Fig. 10 a and d, the predictability limits

f states on the “butterfly wing” regions are generally higher, and

he predictability limits of states on the regime transition region

re lower. As the magnitudes of the initial condition and model

ncertainties superimposed on each state are of the same mag-

itude, this suggests that the local predictabilities in the regime

ransition region are sensitive to initial condition uncertainty. The

rowth rate of initial condition uncertainty is thus faster, which

esults in less time for it to reach saturation. In the “butterfly

ing” regions of the attractor, the local predictability is relatively

nsensitive to initial condition uncertainty, leading the initial con-

ition uncertainty to slowly reach saturation. The spatial distri-

utions of local predictability limits of states induced by model

ncertainties are shown in Fig. 10 b and e. Unlike the spatial dis-

ributions of predictability limits induced by initial condition un-

ertainties, the local predictability limits of states in the regime

ransition region are higher and the predictability limits of states

n the “butterfly wing” regions are lower. This indicates that lo-

al predictabilities in the regime transition region are insensitive

o model uncertainty, whereas local predictabilities in the “but-

erfly wing” regions are more sensitive to model uncertainty. The

rowth rates of model uncertainties in the “butterfly wing” regions

re thus faster and more quickly reach saturation. In the regime

ransition region, local predictability is insensitive to model un-

ertainty, leading to more time for model uncertainties to reach

aturation. Fig. 10 c and f shows the differences between the lo-

al predictability limits induced by initial condition and model er-

ors. The differences in the regime transition region are negative,

uggesting that initial condition uncertainties have a more neg-

tive effect on local predictability than do model uncertainties.

dditionally, the difference values are approximately −4, indicat-

ng that forecasts can be 4 time units longer in the scenario with

odel uncertainty than in the scenario with initial condition un-

ertainty, both of which have the same magnitudes of uncertainty

n this region. The difference values are the same for all uncer-

ainty magnitudes. In the “butterfly wing” regions, the differences

re positive, indicating that model uncertainties play a more neg-

tive role in local predictability in these regions. The difference

alues are up to 4, with positive values accounting for the ma-
ictability limits of 500 consecutive states induced by initial (red) and model (black) 

erred to the web version of this article.) 
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Fig. 9. Difference in local predictabilities for each state from initial condition and parameter errors for a trajectory of 500 states with error magnitudes of (a) 10 −2 and (b) 

10 −5 . The black line indicates no difference. 

Fig. 10. Spatial distributions of local predictability limits projected on the X–Z plane of the Lorenz attractor with initial condition and model uncertainty magnitudes of (a–c) 

10 −2 and (d–f) 10 −5 . The left panels are with only initial condition errors in the system, the middle panels are with only model errors in the system, and the right panels 

are the difference between the predictability limits induced by initial condition and model errors. 
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jority. This demonstrates that the forecast time in the initial con-

dition uncertainty scenario ranges from 0 to 4 time units longer

than in the model uncertainty scenario, both of which have the

same uncertainty magnitude in this region. In a minority of re-

gions in the “butterfly wing”, the initial condition and model un-

certainties have the same influence on local predictability, and the

forecast times are the same regardless of which type of uncer-

tainty is present. In summary, the regime transition region is al-

ways sensitive to initial condition uncertainty, and the “butterfly

wing” regions are generally sensitive to model uncertainty. It may

be differing dynamics related to initial condition and model uncer-

tainties that results in this interesting phenomenon. We next ex-

plore this possibility. The 500 consecutive states shown in Fig. 8 a

move periodically back and forth through the two regimes, indi-

cating the periodic movement of states through regions with dif-

ferent sensitivities to uncertainty. As a result, the differences be-

tween the local predictability limits of consecutive states on the at-

tractor induced by initial condition and model uncertainties change

periodically. 
Evans et al. [20] classified the Lorenz attractor into two weather

egimes. As described above, in the regime transition region, the

ocal predictabilities of states are more sensitive to initial condition

ncertainty than they are to model uncertainty. This suggests that

ore attention should be paid to reducing initial condition un-

ertainty during transitions between the two regimes. In this way,

orecast skill can be effectively im proved. During either regime, the

ocal predictabilities are more sensitive to model uncertainty. Dur-

ng these periods, the focus should be on improving the accuracy

f the model to improve forecasts. 

In the real atmospheric system, the initial condition and model

ncertainties are both present [54] . Consequently, we designed an-

ther experiment to investigate the impacts on local predictability

imits of a scenario in which both uncertainties are present in the

odel. In this scenario, the state and three parameters are all im-

erfect. A group of error vectors is superimposed on x ( t 0 ), y ( t 0 ),

 ( t 0 ), σ , r, and b. Then, the perfect model is integrated for 50 0 0

ime steps from the true state ( x ( t 0 ), y ( t 0 ), z ( t 0 )) as a true run, and

he imperfect model for 50 0 0 time steps from the imperfect state
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Fig. 11. Spatial distributions of local predictability limits projected on the X–Z plane in the scenario with initial condition and model uncertainties both present in the Lorenz 

model. The magnitudes of initial condition and model uncertainties are (a) 10 –2 and (b) 10 –5 , respectively. 
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 x ′ ( t 0 ), y ′ ( t 0 ), z ′ ( t 0 )) as a forecast run. Using the NLLE method, the

ocal predictability limit of state ( x ( t 0 ), y ( t 0 ), z ( t 0 )) can be deter-

ined quantitatively when the initial condition and model uncer-

ainties are both present in the model. 

Fig. 11 shows the spatial distributions of local predictability lim-

ts in the scenario where both uncertainties are present in the

orenz model. As shown in Fig. 11 , the local predictability limits

re, on the whole, lower that those induced by only one type of

ncertainty existing in the model, indicating that the combination

f initial condition and model uncertainties has a greater impact

n the predictability of the Lorenz model. When only the initial

ondition uncertainty is present in the model, the local predictabil-

ty limits are generally higher in the “butterfly wing” regions, but

ower in the regime transition region. The spatial distributions of

ocal predictability limits are inverse when only the model uncer-

ainty is present in the model. However, from Fig. 11 , the differ-

nces in the local predictability limits of states in different regions

re not so large compared with those induced by initial condition

r model uncertainties. In our opinion, when both uncertainties

re present in the Lorenz model, the respective effects of the ini-

ial condition and model uncertainties can offset each other, which

ecreases the spatial differences induced when only one type of

ncertainty is present. 

. Discussion and conclusions 

Initial condition and model uncertainties are unavoidable, and

re responsible for the loss of atmospheric predictability. The rela-

ive effects of the two types of uncertainty on predictability remain

ncertain, despite much research being performed on this subject.

ne reason for this is that the two types of uncertainty are diffi-

ult to separate from each other. In this work, we adopt the clas-

ic Lorenz model as a surrogate for the atmosphere to study the

elative effects of initial condition and model uncertainties on lo-

al predictability. In this chaotic model, the initial condition and

odel uncertainties can not only be separated in idealized exper-

ments, but their respective effects on local predictability can also

e studied. The LLE method is practicable only in the scenario with

nitial errors being infinitesimally small, when the errors grow to

 certain size and their evolution is not governed by the linear

heory. That is, the LLE method fails to characterize the average

rowth rates of large errors. The NLLE method has no such limita-

ion and is applicable even with large errors. Therefore, we used

he NLLE method to quantify the local predictabilities of states

hen only initial or model uncertainties are present in the sys-

em. The local predictability limits induced by initial condition and
odel uncertainties can then be determined. A quantitative com-

arison of the relative effects of initial condition and model un-

ertainties is obtained by calculating the differences of local pre-

ictability limits of the same states induced by the two types of

ncertainty with the same magnitude. 

First, we compare the growth rates for initial condition and

odel errors superimposed on different states of the same mag-

itude. Results show that the relative growth rates of the two

ypes of uncertainty vary with iteration step and state. The corre-

ponding growth of initial condition and model uncertainties also

hanges with iteration step and state. For different states, the time

equired for initial condition uncertainty to reach saturation can be

reater or less than that for model uncertainty, with both uncer-

ainties reaching saturation simultaneously for some states. In ad-

ition, the local predictability limits decrease as the magnitudes of

he two types of uncertainty increase, suggesting that both types

f uncertainty have negative effects on local predictability limits.

e also considered the sensitivity of local predictability to each

arameter and found that it is most sensitive to parameter b, less

ensitive to parameter r, and least sensitive to parameter σ . 

To compare quantitatively the relative effects of the two types

f uncertainty on local predictability, the differences between the

ocal predictability limits of 500 consecutive states induced by ini-

ial condition and model uncertainties are calculated. Results show

hat the differences fluctuate around zero, indicating the relative

ffects of initial condition and model uncertainty vary with state.

oreover, the differences change periodically. To determine the

ause of this phenomenon, spatial distributions of predictability

imits on the Lorenz attractor induced by the two types of uncer-

ainty are evaluated. Distinct inverse spatial distributions of local

redictability limits are found to be induced by initial condition

nd model uncertainties. In the two “butterfly wing” regions of the

orenz attractor, the local predictability limits induced by initial

ondition uncertainty are relatively high, whereas the local pre-

ictability limits are relatively low in the regime transition region.

or model uncertainty, the opposite is true. The local predictability

imits are relatively high in the regime transition region but low in

he two “butterfly wing” regions of the Lorenz attractor. The spatial

istributions of differences between the local predictability limits

nduced by initial condition and model uncertainties ( Fig. 10 c and

) are less than zero, and are approximately −4 in the regime tran-

ition region, suggesting forecasts can be 4 time units longer in

he model uncertainty scenario than in the initial condition un-

ertainty scenario, both of which are of the same magnitude. In

he two “butterfly wing” regions of the Lorenz attractor, the dif-

erences range from 0 to 4, with zero values accounting for only
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a minority of areas. This suggests that we can forecast up to four

time units longer in most regions when model uncertainty but not

initial condition uncertainty is present. In a minority of areas, the

forecast times are the same for both types of uncertainty. There-

fore, the regime transition region is sensitive to initial condition

uncertainty, whereas the “butterfly wing” regions are sensitive to

model uncertainty. The different sensitivities of these regions on

the attractor to initial condition and model uncertainties result in

periodic changes in the differences in local predictability limits. It

may be differing dynamics related to the two types of uncertainty

that leads to the different sensitivities of states in the same region

to initial condition and model uncertainties. However, this needs

further study. 

The varying regional sensitivity to initial condition and model

uncertainty indicates that reducing the initial condition uncer-

tainty during the transition of two regimes may improve forecast

skill. During either regime, the focus should be on reducing model

uncertainty to improve forecast skill. We also studied the impacts

of initial condition and model uncertainties on local predictabil-

ity limits when both uncertainties are present. The results indicate

that differences in the spatial distribution of the local predictability

limits are not large compared with those induced by initial condi-

tion or model uncertainty. It is the combined effects of initial con-

dition and model uncertainties that reduce the spatial differences

induced by only one type of uncertainty. 

Initial condition and model uncertainties have different effects

on local predictability, it is of great significance to investigate their

relative roles with respect to local predictability. The Lorenz model

used in this work, which has three variables, is much simpler

than the sophisticated atmospheric and climate models with a

high number of degrees of freedom. Compared with the Lorenz

model, the variability of the local Lyapunov exponents is reduced

in the sophisticated atmospheric and climate models. Nicolis et al.

[55] pointed out that a super-exponential growth of errors would

arise when the variability is large. Because of the low variability of

local Lyapunov exponents in sophisticated atmospheric and climate

models, the impact of variability on error saturation would in prin-

ciple be lower than in the Lorenz system. As for the relative con-

tributions of initial condition and model uncertainty to predictabil-

ity in sophisticated atmospheric and climate models, the present

results support the view of Lorenz [41] . In short-range forecasts,

the initial condition has a greater impact on local predictability,

whereas the model uncertainty will play a more important role

in long-range forecasts. To verify this point, sophisticated atmo-

spheric and climate models will be needed to study the relative

roles of initial condition and model uncertainties in future work.

Nevertheless, our theoretical results presented here are instructive

and worthy of further study. 
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